
Foundational Concepts for

Building System Models

SEWG MBSE Training Module 3

https://nen.nasa.gov/web/se/mbse/documents

Todd Bayer, Daniel Dvorak, Sanford Friedenthal,

Steven Jenkins, Chi Lin, Sanda Mandutianu

Jet Propulsion Laboratory, California Institute of Technology

Copyright 2012 California Institute of Technology. U.S. Government sponsorship acknowledged.

Model-Based Systems Engineering

Developing and Working with System Models

Objective and Intended Audience

Objectives:

• Understand how systems engineering concepts are expressed in
the JPL Foundation profiles of SysML
– Note: SysML representations are not entirely mature; subject to change

• Understand how automated analysis enhances design integrity

Intended Audience:

• Systems engineers, especially model developers

Prerequisites:

• Systems engineering background

• Basic SysML knowledge assumed

• MBSE Module 2: Introduction to System Modeling

Non-Objectives:

• Not SysML training or tool training

2

Model-Based Systems Engineering

Developing and Working with System Models

Acknowledgements

Funding:

NASA SEWG MBSE Initiative (Joseph Smith)

JPL ESD Integrated Model-Centric Engineering (Chi Lin)

JPL Formulation & Systems Engineering Division (David Nichols)

Contributors (in alphabetical order):

Todd Bayer, Daniel Dvorak, Sanford Friedenthal, Steven Jenkins,

Chi Lin, Sanda Mandutianu

Other Sources:

JPL Europa pre-project modeling efforts

JPL Modeling Early Adopters (MEA)

3

Model-Based Systems Engineering

Developing and Working with System Models

Outline

1. Takeaways from MBSE training modules 1 and 2

2. Extending SysML with ontologies

▪ The role of OWL vs. SysML

▪ Reasoning on models

3. The systems engineering ontologies

▪ Mission concepts: mission, objective, requirement, component, …

▪ Analysis concepts: analysis, characterization

▪ Project concepts: program, project, work package, product, process, …

4. Analysis/reasoning on models (examples)

5. Overview of the modeling tool environment and its integration

with CM, Requirements Management, Analysis, and a Query

Generation tool such as one supported by SPARQL

6. Relationship of model to NASA SE lifecycle and gate products

Summary

4

Model-Based Systems Engineering

Developing and Working with System Models

Takeaways from Module 1 “Systems Engineering with Models”

• MBSE is systems engineering … with models

– MBSE formalizes part of systems engineering

• MBSE addresses SE problems of complexity, architecture,

integration, reuse, and technical/programmatic coupling

• A system model …

– integrates info from discipline models

– becomes part of the technical baseline

– serves team as single source of authoritative information

• Needed infrastructure …

– Tools, training, standards, methodology

• Multi-pronged, evolutionary infusion strategy recommended

– Culture change takes time

5

Model-Based Systems Engineering

Developing and Working with System Models

Takeaways from Module 2: “Introduction to Modeling”

• A system model is both descriptive and analytical

• A system model integrates information from many

discipline models

• A good model has unambiguous semantics

• A good model narrows the risky and expensive gap

between describing a design and analyzing it

• SysML, as a language, can be extended with profiles

for domain-specific languages

• MBSE doesn’t change NASA’s SE processes
– Doesn’t change what is done, but can change how it is done

6

Model-Based Systems Engineering

Developing and Working with System Models

EXTENDING SYSML FOR

SYSTEMS ENGINEERING

• The role of OWL and SysML

7

Model-Based Systems Engineering

Developing and Working with System Models

Extending SysML

• SysML permits user-defined extensions called stereotypes

• Stereotypes extend existing SysML concepts with additional
properties and constraints

• Stereotypes are grouped into special packages called profiles

• The new concepts, and the grammar for using them in well-formed
constructions, can be represented in an ontology

8

“SysML is a general-purpose systems modeling language intended to

support a wide range of domain-specific applications such as the

modeling of automotive or aerospace systems. SysML has been

designed to enable extensions that support these specialized

domains. An example may be a customization of SysML for the

automotive domain that includes specific automotive concepts …”

Chapter 14, A Practical Guide to SysML

Friedenthal, Moore and Steiner

Model-Based Systems Engineering

Developing and Working with System Models

What is an Ontology?

• An ontology describes

concepts and relationships

for a domain of interest

• Concepts have

relationships to each other

• Ontologies specify legal

sentences

• Some concepts form a type

hierarchy

• Concepts have properties
– e.g., mass

• Ontologies have rules
– e.g., a function is performed

by exactly one component

Mission

Requirement

Component

Project

Interface

Objective

presents

executes

performs

pursues

deploys

specifies

Function

Legend

Concept

relationship

a type of

Antenna

HwComponent

Reflector Feedhorn

Solar PanelMain Engine

FlightHwComponent

9

mass

1

An ontology is

an agreement

on usage, rather

than a dictionary

or a taxonomy

Model-Based Systems Engineering

Developing and Working with System Models

Organization / Structure

• Provides guidance to systems engineers, no need to ‘reinvent the wheel’

• A well-organized ontology pays benefits on every project

Communication / Reuse / Collaboration

• Consistent meaning and usage across programs, projects, organizations
and tools promotes communication

Automation

• Well-structured models can be checked automatically for various types
of completeness, consistency, and conformance to specifications

Integration

• Well-defined concepts facilitate data exchange among multiple tools

Motivations for Ontology

10

Model-Based Systems Engineering

Developing and Working with System Models

Systems Engineering Ontologies

Foundation Ontologies

Base, Mission, Analysis, Project,
Quantities-Units-Dimensions-Values

Fundamental terms
use in all projects,
disciplines, and
applications

uses

Discipline
Ontologies

• Mechanical
• Electrical
• Thermal
• Propulsion
• ACS, Physics, …

Discipline-specific terms
specified and owned by
cognizant organizations

Focus is integration
and interoperation

uses

uses

Application Ontologies

Flight System, Sun Sensor, Reaction Wheel,
Thruster, Antenna, …

Kinds of items that are
modeled in a project

Focus is reuse

11

Scope of this Module

Model-Based Systems Engineering

Developing and Working with System Models

Representing Ontologies using OWL and SysML

• OWL is a language for expressing ontologies using a logical formalism

• SysML is a graphical modeling language for representing systems engineering concepts

12

Ad-hoc Automatic ProcessingLogical Automatic Processing

OWL SysML

MBSE approach leverages both OWL and SysML

Component has performs relationship with Function
Hardware specializes Component
FlightHardware specializes Hardware
FlightHardware has mass property
StarTracker specializes FlightHardware

Model-Based Systems Engineering

Developing and Working with System Models

OWL and SysML: Complementary Modeling Languages

OWL
• The Web Ontology Language

(OWL) is a W3C standard

• OWL is a Description Logic (DL)

language for ontologies

• Statements, axioms, assertions, etc.

• Can express a formal ontology

• Supports automated reasoning:

check model consistency, well-

formedness

Take-away:

• OWL provides knowledge

formalism

SysML
• The Systems Modeling Language

(SysML) is an OMG standard

• SysML is a graphical modeling
language for the SE domain

• Requirements, structure, behavior,

parametrics

• Extension mechanisms to

express a domain ontology

• Supports some automatic
reasoning

Take-away:

• SysML provides graphical
expressiveness

13

Model-Based Systems Engineering

Developing and Working with System Models

SysML
modeling tool

System
model

edit

system

model

IMCE Vision for OWL/SysML Integration

OWL editor
(e.g., Protégé)

OWL
statements

14

edit ontology

Profile
Model

Transformation

convert ontology

to SysML profile

Model
Transformation

OWL
statements

convert SysML

model to OWL

OWL
Reasoners

Check consistency and

satisfiability. Compute

entailments.

run integrity

checks

SPARQL

queries

Custom
Analysis

This is one example of
how OWL and SysML tools
might be used in MBSE

Model-Based Systems Engineering

Developing and Working with System Models

English ➔ OWL ➔ SysML Profile ➔ Usage

English: “Component performs Function”

<owl:Class rdf:about="&mission;Function">

<rdfs:subClassOf rdf:resource="&base;IdentifiedElement"/>

<rdfs:subClassOf rdf:resource="&mission;SpecifiedElement"/>

</owl:Class>

<owl:ObjectProperty rdf:about="&mission;performs">

<rdf:type rdf:resource="&owl;AsymmetricProperty"/>

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

<rdf:type rdf:resource="&owl;IrreflexiveProperty"/>

<rdfs:range rdf:resource="&mission;Function"/>

<rdfs:domain rdf:resource="&mission;PerformingElement"/>

</owl:ObjectProperty>

<owl:Class rdf:about="&mission;Component">

<rdfs:subClassOf rdf:resource="&base;ContainedElement"/>

<rdfs:subClassOf rdf:resource="&base;Container"/>

<rdfs:subClassOf rdf:resource="&base;IdentifiedElement"/>

<rdfs:subClassOf rdf:resource="&mission;PerformingElement"/>

</rdfs:subClassOf>

</owl:Class>

OWL (RDF)

SysML

profile

pkg [Profile] Component performs Function

«stereotype»
mission:Component

«stereotype»
mission:performs

«stereotype»
mission:Function

(animated)

15

Usage

bdd [Package] Component performs Function

«mission:Component»
Orbiter Spacecraft

«mission:performs» «mission:Function»
Transmit Science Data

Model-Based Systems Engineering

Developing and Working with System Models

Simple Reasoning Examples

Type Given this input * A reasoner concludes …

Consistency • “has mass” is a functional property.
• Curiosity is a HardwareComponent.
• Curiosity has mass 850 kg.
• Curiosity has mass 900 kg.

Inconsistent:
At least two facts are mutually
contradictory.

Satisfiability • Work Package and Organization are
disjoint concepts.

• Every Project is both a Work
Package and an Organization.

Unsatisfiable: no Project can
exists that satisfies all rules.

Rules Entailment • Every Spacecraft is a Component.
• Every Orbiter is a Spacecraft.

Every Orbiter is a Component.
(Therefore, all Component rules
and Spacecraft rules apply to
every Orbiter.)

Facts Entailment • Every Spacecraft is a Component.
• MSL Rover (an individual, not a class)

is a Spacecraft.

MSL Rover is a Component.

* Examples given in “equivalent” natural language, not OWL.

Purpose is to show kinds of problems for which reasoning is

useful, not to demonstrate the mechanics.

(animated)

16

Model-Based Systems Engineering

Developing and Working with System Models

Fragment from ontology

Fragment from a system model
• explains and validates are

object properties (relations)

• validates is a subproperty of

explains, meaning

– (x validates y) implies

(x explains y)

– or, validation is a kind of

explanation, but not vice-

versa

• inverse of explains is

isExplainedBy

• inverse of validates is

isValidatedBy

• isValidatedBy should be a

subproperty of isExplainedBy

17

Ontology Hygiene Example

Analysis

Anything

explains

validates

subproperty of

isExplainedBy
inverse of

isValidatedBy
inverse of

subproperty of?

Validation

explains

validates

Model-Based Systems Engineering

Developing and Working with System Models

SPARQL Query Example

• This example illustrates an audit in SPARQL for previous example

• Literally it says “If p1 and p2 are distinct properties such that p1 is a

subproperty of p2, and p1
-1 and p2

-1 exist, then report whether p1
-1

is a subproperty of p2
-1”

• Most important features to note: it’s short and fast

• A collection of similar queries can form the basis of a continuous

validation suite for ontology and model development

select distinct ?p1 ?p2 ?inverse_ok
where {

?p1 rdfs:subPropertyOf ?p2 .
?p1 owl:inverseOf ?p1_inverse .
?p2 owl:inverseOf ?p2_inverse .

bind (exists { ?p1_inverse rdfs:subPropertyOf ?p2_inverse } as ?inverse_ok)

filter (?p1 != ?p2)
}

18

Model-Based Systems Engineering

Developing and Working with System Models

OVERVIEW OF SYSTEMS

ENGINEERING ONTOLOGIES

19

Model-Based Systems Engineering

Developing and Working with System Models

Introduction

• The purpose of the Systems Engineering Ontologies is

to encompass key concepts and associate vocabulary

for modeling systems in the space system domain

• The emphasis in this training module is on the ontology

concepts and how they appear in SysML models

• Examples are given representing a fanciful mission to

the extrasolar planet Kepler-16b

20

Model-Based Systems Engineering

Developing and Working with System Models

Some Foundation Concepts Examples

Concept Definition Examples

Component Performs one or more functions and
presents zero or more interfaces
that define its connections

launch vehicle, spacecraft, telecom
subsystem, flight software, attitude
control software, and mission operations
team

Interface A set of mechanical, electrical,
signal, or other properties that
describe some aspect of a
component's connection to or
interaction with another component

spacecraft to launch vehicle, launch
vehicle to spacecraft, battery terminals

Function An operation or an activity
performed by a Component in the
context of executing a Mission

search for life on Mars, insert into Martian
orbit, send instrument telemetry

Requirement An assertion about a Component,
Function, or Interface that must be
true for every acceptable realization
of that element

• The spacecraft bus main structure
shall be aluminum.

• The spacecraft shall provide 300 W to
instruments.

Work Package Discrete unit of project authority,
cost, schedule, and activity; a node
in the project Work Breakdown
Structure

Project Systems Engineering, Spacecraft
System, Spacecraft Product Assurance

22

Model-Based Systems Engineering

Developing and Working with System Models

Partial Map of Foundation Ontology Concepts

performs

23

Think in terms of statements:
• “Requirement specifies Component”
• “Component performs Function”
• “WorkPackage supplies Component”

Environment

Mission

Component

Interface

containsinfluences

deploys

Function

Objective
pursues

Requirement

invokes

Legend

relationship

a kind of

Mission ontology

Project ontology

Analysis ontology

(animated)

Analysis
analyzes

Characterization

Project
supplies

Program

Concern Stakeholder

represents

represents

Product
produces

WorkPackage
supplies

Process

produces

Model-Based Systems Engineering

Developing and Working with System Models

THE MISSION

ONTOLOGY
Missions and Objectives

Physical Structure

Interfaces

Behavior and Functions

Specification by Requirements

Environment

24

Model-Based Systems Engineering

Developing and Working with System Models

Mission Ontology Scope (partial)

Mission Ontology defines concepts for describing missions in terms of:
• Objectives,

• Constituent components,

• Functions those components perform

• Requirements that specify them

Environment

Mission

Interface

performs

contains

in
flu

e
n

c
e
s

deploys

Function

Objective
pursues

Requirement

invokesin
d

u
c
e

s

aggregates

refines

Junction
joins

Flow Item

traverses

MessageMaterialItem

Component

sends, receives

25

Requirements

refinement

System

breakdown
Functional

decomposition

Model-Based Systems Engineering

Developing and Working with System Models

Objective

• An Objective represents a specific interest that one or more stakeholders have in the

successful execution of a mission

• Objectives differ from Requirements:

– they are not the result of negotiated agreement between customer and supplier

– they need not be mutually consistent

– a Mission pursues but need not completely achieve all its Objectives

• Objectives can be aggregated

Objective

aggregates

Extrasolar P lanetary Exploration Program Objec tives[Package] V iewsbdd []

«mission:Objective»

Character ize the atmosphere

of Kepler 16-b

«mission:Objective»

Character ize the energetic

particle environment of the

Kepler 16-b binary star

system

«mission:Objective»

Character ize the gravitational

 field of Kepler 16-b

«mission:Objective»

Character ize the liquid ocean

 of Kepler 16-b

«mission:Objective»

Character ize the rocky core

of Kepler 16-b

«base:aggregates»«base:aggregates» «base:aggregates»

26

Model-Based Systems Engineering

Developing and Working with System Models

Mission pursues Objective

27

Mission Objective
pursuesMissions pursue scientific and technical objectives

– A Mission can pursue multiple Objectives

– An Objective can be pursued by more than one Mission

Extrasolar P lanetary Exploration Program Missions and Objec tives[Package] V iewsbdd []

«mission:Mission»

Orbiter Mission

«mission:Objective»

Characterize the gravitational fie ld of Kepler

16-b

«mission:Mission»

Lander Mission

«mission:Objective»

Characterize the atmosphere of Kepler

16-b

«mission:Objective»

Characterize the rocky core

of Kepler 16-b

«mission:Objective»

Characterize the liquid

ocean of Kepler 16-b

«mission:Objective»

Characterize the energetic

particle environment of the

 Kepler 16-b binary star

system

«mission:pursues»

«mission:pursues»

«mission:pursues»

«mission:pursues» «mission:pursues»
«mission:pursues»

«mission:pursues»

Model-Based Systems Engineering

Developing and Working with System Models

Mission deploys Component

28

Mission Component
deploys

A Mission pursues Objectives by

deploying a set of assets, i.e., Components

Model-Based Systems Engineering

Developing and Working with System Models

Component Containment (System Breakdown)

29

Component
contains

A Component may contain other Components
• Physical encapsulation

• Physical assembly

• Functional performer decomposition
Kepler 16-b Orbiter Spacecraft P roduct B reakdown[Package] Viewsbdd []

«mission:Component»

Orbiter Spacecraft
«mission:Component»

Orbiter Guidance,

Navigation and Control

Subsystem

«mission:Component»

Orbiter Spacecraft

Flight Software

«mission:Component»

Orbiter Mechanical

Susbsystem

«mission:Component»

Orbiter Propulsion

Subsystem

«mission:Component»

Orbiter Power

Subsystem

«mission:Component»

Orbiter Thermal

Subsystem

«mission:Component»

Orbiter Command and

Data Handling

«mission:Component»

Orbiter Telecom

Subsystem

«mission:Component»

Orbiter Harness

«base:contains»

«base:contains»

«base:contains»

«base:contains»

«base:contains»

«base:contains»

«base:contains»

«base:contains»

«base:contains»

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Spacecraft and Launch V ehic le Interfaces[Package] Viewsbdd []

«miss ion:Interface»

Spacecraft-to-Launch Vehicle

Interface

«mission:Interface»

Launch Vehicle-to-Spacecraft

Interface

«mission:Component»

Lander Spacecraft

«miss ion:presents»

 : Spacecraft-to-Launc h V ehicle In terface [1]

«mission:Component»

Lander Launch System

«miss ion:presents»

 : Launc h V ehic le-to-Spacecraft In terface [1]

Component presents Interface

• An Interface identifies a set of mechanical, electrical, signal,
or other properties that describe some aspect of a
component's connection to or interaction with another
component.
– An interface is a specification, not a thing

– It appears as a typed port

Component Interface
presents

Mission:Interface is
used to type a port

30

Model-Based Systems Engineering

Developing and Working with System Models

Junction joins Interface

• A Junction indicates that a pair of Interfaces may be

connected
– A declaration, not a physical entity

• High level of abstraction
• Avoid commitment to a particular implementation

• Common pattern: a Junction at one level of abstraction is

represented at a more detailed level by an actual component

(e.g., a physical cable or harness).

Interface

Junction

joins

31

Kepler 16-b Spacecraft and Launc h Vehicle J unction[Package] Interfacesbdd []

«miss ion:Interface»

Spacecraft-to-Launch Vehicle Interface

«miss ion:Interface»

Launch Vehicle-to-Spacecraft Interface

«miss ion:Junction»

Spacecraft Launch Vehicle Mating

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Pro ject In terface D efini tions[Package] V iewsbdd []

«mission:Interface»

Telemetry

«mission:Interface»

Command

«mission:Interface»

Command In

«mission:Interface»

Science Data In

«mission:Interface»

Command Out

«mission:Interface»

T elemetry Out

«mission:Interface»

Science Data

«mission:Interface»

Telemetry In

«mission:Interface»

Science Data Out

«mission:Junction»

Telemetry Downlink

telemetry Intelemetry Out

«mission:Junction»

Command Uplink

command Incommand Out

«mission:Junction»

Science Data Downlink

science Data Inscience Data Out

More Interfaces and Junctions

32

Defines input and output interfaces for

command, telemetry, and science data

Defines specialized interfaces for
spacecraft and ground system

Model-Based Systems Engineering

Developing and Working with System Models

Spacecraft and Ground System Interfaces

33

Shows command,
telemetry and

science interfaces as
ports on spacecraft
and ground system,
using the defined

types, e.g.,
“Command In”

Kepler 16-b Pro ject Orb iter Spacecraft to Ground D ata Sys tem Inter faces[Package] V iewsbdd []

«mission:Component»

Ground Data System

«mission:presents»

 : Command Out

«mission:presents»

 : T elemetry In

«mission:presents»

in : Science Data In

«mission:Component»

Orbiter Spacecraft

«mission:presents»

 : Command In

«mission:presents»

 : Telemetry Out

«mission:presents»

out : Science Data Out

«mission:Interface»

Science Data Out

«mission:Interface»

T elemetry In

«mission:Interface»

Command

«mission:Interface»

Command In

«mission:Interface»

Command Out
«mission:Interface»

Science Data In

«mission:Interface»

Telemetry Out

«mission:Interface»

T elemetry

«mission:Interface»

Science Data

Model-Based Systems Engineering

Developing and Working with System Models

Mission performs Function

• A Mission performs one or more Functions

• A Function represents an intent to change the state of the world

• A Function may invoke another Function

Mission
performs

Function

invokes

34

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Orbiter Mission Functions[Package] Viewsbdd []

«mission:Mission»

Orbiter Mission

«mission:Function»

Conduct Mapping Science Operations

«component»

Manage Payload

«mission:Function»

Receive Orbiter Science

Data

«mission:Function»

Transmit Obiter Science

Data

«mission:Function»

Deliver Payload to Kepler

16-b

«component»

Manage Spacecraft

«mission:Component»

Orbiter Launch System

«mission:Component»

Ground Data System

«mission:Component»

Orbiter Mission

Operations System

«mission:Component»

Orbiter Spacecraft

«mission:performs»

«mission:performs»

«mission:performs»

«mission:invokes»

«mission:deploys»

«mission:performs»

«mission:performs»

«mission:performs»

«mission:invokes»

«mission:invokes»

«mission:invokes»

«mission:deploys»
«mission:deploys»

«mission:deploys»
«mission:invokes»

{Mission, Component} performs Function

• Every Component performs
one or more Functions

Mission

Function

invokes
Component

deploys

35

<<mission:Function>>

<<mission:Function>>

Model-Based Systems Engineering

Developing and Working with System Models

{Item, Flow} traverses Junction

• A Function may interact by
sending and receiving Items

• An Item is a discrete quantity
of matter or information

–A Message is a discrete unit of
information

• A Flow is an exchange of
matter or energy

• Without natural boundaries

• An Item or Flow traverses a
Junction

• An Interface transfersIn or
transfersOut an Item or
Flow

Junction

Item Flow

traverses

36

MessageMaterialItem

traverses

Kepler 16-b Science D ata Uni t D efini tion[Package] V iewsbdd []

flow properties

out s du : Science D ata Uni t{d i rection = out}

«mission:Interface»

Science Data Out

flow properties

in sdu : Science D ata Uni t{d i rection = in}

«mission:Interface»

Science Data In

«mission:Interface»

Science Data

«mission:Message»

Science Data Unit

flow properties

inout s du : Science D ata Uni t{d irection = inout}

«mission:Junction»

Science Data Downlink

«mission:joins2»

science Data In1

«mission:joins1»

science Data Out 1

transfersOut

transfersIn

traverses

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Science D ata Uni t Usage[Package] V iewsbdd []

 : Ground Data System

«mission:presents»

in : Science Data In

 : Orbiter Spacecraft

«mission:presents»

out : Science Data Out

«mission:Mission»

Orbiter Mission

«mission:Function»

Receive Orbiter Science Data

flow properties

out s du : Science D ata Uni t{d irection = out}

«mission:Interface»

Science Data Out

«mission:Function»

Transmit Orbiter Science

Data

«mission:Component»

Ground Data System

«mission:presents»

in : Science Data In

flow properties

in sdu : Science D ata Uni t{d irection = in}

«mission:Interface»

Science Data In

«mission:Component»

Orbiter Spacecraft

«mission:presents»

out : Science Data Out

«mission:Message»

Science Data Unit

science Data Out

science Data In

 : Science Data Downlink

Science Data Unit

«mission:performs»

«mission:performs»

«mission:deploys»

«mission:deploys»

flow properties

inout s du : Science D ata Uni t{d irec tion = inout}

«mission:Junction»

Science Data Downlink

«mission:joins2»

science Data In 1

«mission:joins1»

science Data Out 1

Function sends Message; Message traverses Junction

37

JunctionInterface

traverses

Function

Component
joinspresents

Embedded IBD shows

Science Data Downlink

as a connector
Message

sends

representation of
sends/receives TBD

Model-Based Systems Engineering

Developing and Working with System Models

Connectors are Junction Occurrences

• Internal Block Diagram shows actual, not merely

possible, connections and traversals

38

Orbi ter M is sion In terc onnection[mission:Mission] Orb i ter M is sionibd []

 : Orbiter Spacecraft

 : C omm and In

 : Te lemetry Out

 : Science D ata Out

 : Ground Data System
 : C omm and Out

 : Te lemetry In

 : Science D ata In : Science Data Downlink

Science Data Unit

 : Telemetry Downlink

Telemetry Data Unit

Command Data Unit

 : Command Uplink

Model-Based Systems Engineering

Developing and Working with System Models

Requirement

• A Requirement is an assertion that must be true of every

acceptable realization of an entity

• Requirements are traditionally grouped in ad-hoc categories

(functional, performance, etc.)

• Without semantic rigor, not very useful

• Every Requirement specifies at most one entity

• Component

• The performs relationship between Component and Function

• The presents relationship between Component and Interface

• A Requirement always binds a Component (directly or

transitively)

• A lower-level Requirement refines a higher-level Requirement

39

Model-Based Systems Engineering

Developing and Working with System Models

Program-Level Functional Requirements

40

Extrasolar P lanetary Exploration Program Functional Requi rem ents[Package] V iewsbdd []

Text = "The Kepler 16-b lander shall be launched

between August 1 and August 30, 2020 by a Delta

II-2925-9.5, expendable launch vehicle from Cape

Canaveral Air Station, USA, and shall land safely on

K16-b in May-June, 2030."

Id = "18"

«mission:Requirement»

Mission T imeline

«mission:Function»

Execute Kepler 16-b

M apping M ission

Id = "17"

Text = "The Kepler 16-b

mission shall conduct

surface science on the

planet K16-b."

«mission:Requirement»

Conduct surface

science on Kepler 16-b

«mission:Mission»

Orbiter Mission
«mission:performs»

«mission:specifies»
«mission:specifies»

Mission Function

Requirement

performs

specifies

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Orb iter Requi rements[Package] V iewsbdd []

«mission:Component»

Orbiter Spacecraft

«mission:presents»

out : Science Data Out

«mission:Function»

Deliver Payload to Kepler

16-b

«mission:Component»

Launch System

Id = "23"

Text = "The Kepler 16-b

Orbiter shall transport a

radiometer."

«mission:Requirement»

Radiometer

Id = "21"

Text = "The Kepler 16-b

Orbiter shall comply with

CCDSD-XYZ."

«mission:Requirement»

CCDS Compliance
Id = "22"

Text = "The Kepler 16-b

Orbiter shall launch on a

Delta IV."

«mission:Requirement»

Launch Vehicle

«mission:specifies»

«mission:performs»

«mission:specifies»
«mission:specifies»

Requirement specifies ….

41

interface requirement functional requirement

Model-Based Systems Engineering

Developing and Working with System Models

Function invokes Function; Requirement refines Requirement

42

Kepler 16-b Mapping D ownlink R equirem ent R efinem ent[Package] V iewsbdd []

«mission:Requirement»

Mapping Downlink Effective Data Rate

«mission:Function»

Conduct Mapping Science

Operations

«mission:Mission»

Orbiter Mission

«mission:Requirement»

Spacecraft EIRP

«mission:Requirement»

Ground G/T

«mission:Component»

Orbiter Spacecraft

«mission:Component»

Ground Data System

«mission:Function»

Receive Orbiter

Science Data

«mission:Function»

Transmit Obiter

Science Data
«mission:performs»

«mission:performs»

«mission:performs»

«mission:deploys»

«mission:invokes»
«mission:deploys»

«mission:invokes»

«mission:refines»

«mission:specifies»

«mission:specifies»

«mission:specifies»

«mission:refines»

Mission or

Component
Function

Requirement

performs

s
p

e
c
ifie

s

refines

invokes

K16-b Mapping Downlink Requirement Specification

Model-Based Systems Engineering

Developing and Working with System Models

Environment

• An Environment stands for a set of properties that may

affect Components performing one or more Functions

• An Environment influences zero or more Components

• A Component induces zero or more Environments

43

Environment

in
flu

e
n
c
e
s

in
d
u
c
e
s

Component

Model-Based Systems Engineering

Developing and Working with System Models

Kepler 16-b Environments

44

Kepler 16-b Orbiter Envi ronm ents[Package] Viewsbdd []

«mission:Component»

Orbiter Spacecraft

«mission:Component»

Orbiter Command and Data

Handling

«mission:Environment»

Kepler 16-b Stellar Gravity

Field

«mission:Environment»

Kepler 16-b Planetary

Radiation Environment

«mission:Component»

Orbiter Telecom

Subsystem

«mission:Environment»

Orbiter Near RF Field

«mission:influences»
«mission:influences»

«mission:influences»
«mission:influences»

«mission:influences»«mission:induces»

«base:contains» «base:contains»

Environment

in
flu

e
n

c
e
s

in
d

u
c
e

s

Component

Model-Based Systems Engineering

Developing and Working with System Models

THE ANALYSIS ONTOLOGY

Analysis

Characterization

45

Foundation Ontologies

Mission, Project, Analysis,
Quantities-Units-Dimensions-Values,

Artifact

Model-Based Systems Engineering

Developing and Working with System Models

The Analysis Profile Scope

• The Analysis Ontology defines general concepts and

relationships for analyses such as trade studies, cost

estimates, etc.

• The Analysis Profile defines classes and properties

that describe characterization and analysis of model

elements.

• One of the key principles of Analysis is to separate

identity from description

– We don’t necessarily say a spacecraft has “a mass”

– We might say it is characterized by one or more mass property

characterizations

• e.g., as estimated, as measured, with contingency, etc.

– These characterizations represent choice about description

46

Model-Based Systems Engineering

Developing and Working with System Models

Characterization

• Characterization is a central concept in a pattern that

seeks to separate identity from description

• A Characterization is a general entity that

characterizes some other entity

• Example specializations:

• Nominal

• Parametric

47

(an entity)Characterization
characterizes

Note: The Characterization owns the relationship, not the entity.

Thus, a Characterization can be added without having ‘write’ access to the entity.

Model-Based Systems Engineering

Developing and Working with System Models

Example Nominal Characterizations

• Useful for grouping elements

48

Kepler 16-b Project E nvi ronment Definitions[Package] Viewsbdd []

«analysis:Characterization»

Kepler 16-b Star System

«analysis:Characterization»

Kepler 16-b Planet

«mission:Environment»

Kepler 16-b Stellar

Radiation Environment

«mission:Environment»

Kepler 16-b Planetary

Gravity Field

«mission:Environment»

Kepler 16-b Planetary

Radiation Environment

«mission:Environment»

Kepler 16-b Stellar

Gravity Field

«analysis:characterizes»«analysis:characterizes»«analysis:characterizes» «analysis:characterizes»

Model-Based Systems Engineering

Developing and Working with System Models

Characterizations By Milestone

49

Model-Based Systems Engineering

Developing and Working with System Models

Characterizations (CDR & PDR)

50

Model-Based Systems Engineering

Developing and Working with System Models

Analysis

• An Analysis is a Characterization that provides an

explanatory bridge between two sets of model elements

• The Analysis denotes the result, not the process

51

Characterization anything
characterizes

analyzes
Analysisanything anything

explains

Model-Based Systems Engineering

Developing and Working with System Models

Downlink Analysis – Requirement Refinement

52

Kepler 16-b Mapping D ownlink R equirem ent R efinem ent Analysis[Package] V iewsbdd []

«mission:Requirement»

Mapping Downlink Effective Data Rate

«mission:Function»

Conduct Mapping Science

Operations

«mission:Mission»

Orbiter Mission

«mission:Requirement»

Ground G/T

«mission:Requirement»

Spacecraft EIRP

«mission:Component»

Ground Data System

«mission:Component»

Orbiter Spacecraft

«mission:Function»

Receive Orbiter

Science Data

«mission:Function»

Transmit Obiter

Science Data

«analysis:Analysis»

Link Analysis

«mission:performs»

«mission:performs»

«mission:performs»

«mission:deploys»

«mission:invokes»
«mission:deploys»

«mission:invokes»

«analysis:explains»

«mission:specifies»

«analysis:explains»

«mission:specifies»

«mission:refines»

«mission:specifies»

«analysis:analyzes» «mission:refines»

Analysis
analyzes

Requirement

explains
refines

Analysis expresses the

reciprocity between EIRP

and G/T

